Publications
O-GlcNAcylation Regulates Dopamine Neuron Function, Survival and Degeneration in Parkinson Disease
The dopamine system in the midbrain is essential for volitional movement, action selection, and reward-related learning. Despite its versatile roles, it contains only a small set of neurons in the brainstem. These dopamine neurons are [...]
MK-8719, a Novel and Selective O-GlcNAcase Inhibitor That Reduces the Formation of Pathological Tau and Ameliorates Neurodegeneration in a Mouse Model of Tauopathy
Deposition of hyperphosphorylated and aggregated tau protein in the central nervous system is characteristic of Alzheimer disease and other tauopathies. Tau is subject to O-linked N-acetylglucosamine (O-GlcNAc) modification, and O-GlcNAcylation of tau has been shown [...]
Discovery of MK-8719, A Potent O-GlcNAcase Inhibitor as a Potential Treatment for Tauopathies
Inhibition of O-GlcNAcase (OGA) has emerged as a promising therapeutic approach to treat tau pathology in neurodegenerative diseases such as Alzheimer’s disease and progressive supranuclear palsy. Beginning with carbohydrate-based lead molecules, we pursued an optimization [...]
Cytosolic Glucosylceramide Regulates Endolysosomal Function in Niemann-Pick type C Disease
Niemann-Pick type C disease (NPCD) is a neurodegenerative disease associated with increases in cellular cholesterol and glycolipids and most commonly caused by defective NPC1, a late endosomal protein. Using ratiometric probes we find that NPCD [...]