Fluorescence-quenched substrates for live cell imaging of human glucocerebrosidase activity

Deficiency of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) leads to abnormal accumulation of glucosyl ceramide in lysosomes and the development of the lysosomal storage disease known as Gaucher's disease. More recently, mutations in the GBA1 gene that encodes GCase have been uncovered as a major genetic risk factor for Parkinson's disease (PD). Current therapeutic strategies [...]

January 15th, 2015|Tags: , , |

Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice

BACKGROUND: Amyloid plaques and neurofibrillary tangles (NFTs) are the defining pathological hallmarks of Alzheimer's disease (AD). Increasing the quantity of the O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification of nuclear and cytoplasmic proteins slows neurodegeneration and blocks the formation of NFTs in a tauopathy mouse model. It remains unknown, however, if O-GlcNAc can influence the formation of [...]

October 26th, 2014|Tags: , , , , , , , |

The emerging link between O-GlcNAc and Alzheimer disease

Regional glucose hypometabolism is a defining feature of Alzheimer disease (AD). One emerging link between glucose hypometabolism and progression of AD is the nutrient-responsive post-translational O-GlcNAcylation of nucleocytoplasmic proteins. O-GlcNAc is abundant in neurons and occurs on both tau and amyloid precursor protein. Increased brain O-GlcNAcylation protects against tau and amyloid-β peptide toxicity. Decreased O-GlcNAcylation [...]

October 21st, 2014|Tags: , , , , , , , , , , |

Chronic O-β-N-acetylglucosaminylase inhibition with Thiamet-G prevents tau pathology and hyperactivity in rTg4510 mice

Background: The abnormal hyperphosphorylation of the microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD) and aggregation of hyperphosphorylated tau into neurofibrillary tangles is a hallmark brain lesion in AD. Besides kinases and phosphatases tau phosphorylation is regulated by O-GlcNAcylation, a posttranslational modification of proteins on the serine or threonine residues with [...]

September 6th, 2014|Tags: , , , , , |

O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway

The hexosamine biosynthetic pathway elevates posttranslational addition of O-linked β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. Cancer cells elevate total O-GlcNAcylation by increasing O-GlcNAc transferase (OGT) and/or decreasing O-GlcNAcase (OGA) levels. Reducing O-GlcNAcylation inhibits oncogenesis. Here, we demonstrate that O-GlcNAcylation regulates glycolysis in cancer cells via hypoxia-inducible factor 1 (HIF-1α) and its transcriptional target GLUT1. Reducing O-GlcNAcylation [...]

May 22nd, 2014|Tags: , , |

O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer’s disease and beyond

Alzheimer disease (AD) is a growing problem for aging populations worldwide. Despite significant efforts, no therapeutics are available that stop or slow progression of AD, which has driven interest in the basic causes of AD and the search for new therapeutic strategies. Longitudinal studies have clarified that defects in glucose metabolism occur in patients exhibiting [...]

April 24th, 2014|Tags: , , , , , , , , |

Glucocerebrosidase 2 Gene Deletion Rescues Type 1 Gaucher Disease

The inherited deficiency of the lysosomal glucocerebrosidase (GBA) due to mutations in the GBA gene results in Gaucher disease (GD). A vast majority of patients present with nonneuronopathic, type 1 GD (GD1). GBA deficiency causes the accumulation of two key sphingolipids, glucosylceramide (GL-1) and glucosylsphingosine (LysoGL-1), classically noted within the lysosomes of mononuclear phagocytes. How [...]

March 17th, 2014|Tags: , , |

O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers

The aggregation of the microtubule-associated protein tau into paired helical filaments to form neurofibrillary tangles constitutes one of the pathological hallmarks of Alzheimer's disease. Tau is post-translationally modified by the addition of N-acetyl-D-glucosamine O-linked to several serine and threonine residues (O-GlcNAc). Previously, increased O-GlcNAcylation of tau has been shown to block the accumulation of tau [...]

January 18th, 2014|Tags: , , , |

Increasing brain protein O-GlcNAcylation mitigates breathing defects and mortality of Tau.P301L mice

The microtubule associated protein tau causes primary and secondary tauopathies by unknown molecular mechanisms. Post-translational O-GlcNAc-ylation of brain proteins was demonstrated here to be beneficial for Tau.P301L mice by pharmacological inhibition of O-GlcNAc-ase. Chronic treatment of ageing Tau.P301L mice mitigated their loss in body-weight and improved their motor deficits, while the survival was 3-fold higher [...]

December 23rd, 2013|Tags: , , , , |

Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy

Neurofibrillary tangles (NFT), mainly consisting of fibrillar aggregates of hyperphosphorylated tau, are a defining pathological feature of Alzheimer's Disease and other tauopathies. Progressive accumulation of tau into NFT is considered to be a toxic cellular event causing neurodegeneration. Tau is subject to O-linked N-acetylglucosamine (O-GlcNAc) modification and O-GlcNAcylation of tau has been suggested to regulate [...]

December 8th, 2013|Tags: , , , , , |